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Let A be a set of real numbers. and let Yn := {Yo. "', .I'n} be a tebysev system
on A. Assume, moreover, that if inf A or sup A belongs to A. then it is a point of
accumulation of A at which all y, are continuous. We find necessary and sufficient
conditions for the existence of a function Yn . I such that also { Yo' ...• Yn' Yn, I} is
a tebysev system on A. This theorem generalizes earlier results of Zielke and of the
author. The proof is based on an integral representation of Markov systems that
slightly extends a previous result of Zielke. c' 1991 AcademIc Press. Inc

1. INTRODUCTIO~ AND STATEMENT OF RESULTS

In what follows, n ~°is a fixed integer, A denotes a set of real numbers
having at least n + 2 elements, and F(A) denotes the set of real functions
on A; if A is an interval, C( A) denotes the set of continuous functions in
F(A); if Zn := {zo, ..., .:',,} is a sequence of functions in F(A), by S(Zn) we
denote the linear span of Z". Finally, Sn will stand for an n + I-dimensional
subspace of F(A).

We say that Zn is a Cehysev system (weak Cehysev system) if
dimS(Zn}=n+l, and for every sequence {to, ...,tn}cA such that
to<t,<'" <tn' det[z;(t j ); i,j=O, ...,n]>O (~O). If Zk is a (weak)
Cebysev system for k = 0, ... , n, we say that Z,. is a (weak ) Markov system,
or a complete (weak) Cehysev system; if Zo= 1, we say that Zn is
normalized. The linear span of a (weak) Cebysev system is called a (weak)
Haar space, and the linear span of a (weak) Markov system is called a
(weak) Markov space. These definitions are consistent with Karlin and
Studden [1].

If Zn is a (weak) Cebysev system, we say that Zn has a (weak) Cebysev
extension, or, simply, a (weak) extension, if there is a function Zn+ I such
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that ZnU{Znt-l} is a (weak) Cebysev system. We also say that Zn+1 is
(weakly) adjoined to 5(Z,J

In this paper, we study the existence of Cebysev extensions. The existence
of weak extensions for weak Cebysev systems, under very general
hypotheses, follows trivially from a representation theorem of Zielke (see
Theorem A below). As we show in Theorem 4 below, the existence of
Cebysev extensions and the existence of adjoined functions are equivalent
problems.

The problem of existence of adjoined functions was apparently first
studied by Laasonen [4], who showed that if 5 n is an n-dimensional Haar
space of n-times continuously differentiable functions defined on an inter­
val, then it has an adjoined function.

In [5], Rutman asserted that if 5 n is a Haar space of right-continuous
functions defined on an open interval, then it has an adjoined function.
However, he only sketched his proof; this proof is based on an integral
representation of Markov systems which both Zielke and this author have
shown to be false (cf. [6,12]). Rutman also claimed that there is a Haar
space of continuous functions defined on a closed interval for which no
adjoined functions exist (cf. Krein [2, p.21, footnote 2]). However, no
such example seems to have been published, and indeed Krein and
Nudel'man [3] attempted to show that the opposite is true: if 5 n is a Haar
space of continuous functions defined on a closed interval, then it has an
adjoined function. However, their proof is based on Rutman's integral
representation, and is therefore invalid.

In [12], Zielke essentially showed that if 5n is a Haar space defined on
a set having "propert)' (D)," then it has an adjoined function (a set A is said
to have property (D) if it has no first nor last element, and between any
two elements of A is a third element of A), whereas in [7] we showed that
if 5" is a Haar space of continuous functions defined on an interval (closed,
open, or semiclosed), then it has an adjoined function. Although Zielke's
result is stronger, his method cannot be applied to a set that contains one
or both of its enpoints, and indeed, in [13] he includes both his proof, and
a simplified version of ours. (We believe, however, that this simplified proof
is incorrect.)

The purpose of this paper is to combine some of the ideas of [7] with
a refinement of Zielke's representation theorem [14, Theorem 3] to obtain
necessary and sufficient conditions for the existence of Cebysev extensions
and of adjoined functions that contain the results of [7, 12] as particular
cases. But we must first introduce some additional definitions that will be
used in the sequel.

A finite-dimensional subspace 5 of F(A) is called endpoint nondegenerate
(END) provided that for every c in A the restrictions of the elements of 5
to A I := A n (- ox.:, c) and to A 2 := An (c, XJ) form subspaces 51 of F(A I)
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and 52 of F(A 2 ) that have the same dimension as 5. (This term was coined
by D. J. Newman in 1980 to describe a concept introduced by Zwick (see
[15]). It was also used by Zielke in [14], where it is referred to simply as
"nondegeneracy.") We say that Z" c F(A) is an END system, if the
elements of Z" are linearly independent in F(A), and 5(Z,,) is END.

LetfE F(a, h), and c E (a, b). We say thatf is not constant at c if for every
1:>0 there are points X!,x2E(a,h), C-6<X 1 <C<X2<C+/-:, such that
f(xd#f(x2)' (In particular, if f(x) is increasing on (a, b), we have
f(xd<f(X2)')

Let n~1 and let W,,:== {11· 1, ..., H',,} cF(a, h), IzEF(A), and
h(A) c (a, h). We shall say that W" satisfies property (M) with respect to h,
provided that, for every choice of points Xo < x! < ... < X n in h(A), there
is a double sequence {t ,.}; i == 0, ... , n, j == 0, ... , n - i} such that:

(a) x,==to.,;j==O, .... n.

(b) t I. , < t I + I., < t I. ,+ I ; i == 0, ... , n - I, j == 0, ..., n - i-I.

(c) For i== I, ..., n, wi(x) is not constant on {t,.};j==O, ... , n - i}.

If these conditions are satisfied for a specific set of points X o< ... < x" in
h(A), we say that W" satisfies property (M) with respect to h at
{xo, ..., x n }· We shall also say that W" satisfies property (N) with respect to
h, if for every choice of points Xo < ... < X" t 1 in h(A) there is a double
sequence {t ,.,: i == 0, ... , n + I, j == 0, ..., n - i + I} such that:

(a) xJ == to, I ; j == 0, ..., n + I.

(b) ti.}<ti~I.J<t,.jtI: i==O, ...,n,j==O, ...,n-i.

(c) For i == I, ... , n, w,(x) is not constant on {t i.}; j == 0, ..., n - i + I }.

If Z" c F(A) we say that (h, c, W", U,,) is a representation for Z" on A,
provided that h(x) is a strictly increasing function in F(A), cEh(A),
h(c) == c, the functions l1'i(X), i == I, ..., n, are increasing and continuous in
j(h) :== (inf h(A), sup h(A)), U,,:== {uo, , Un}, where Uo E F(A) is positive,
{UO'''''u i } is a basis of S(Z,), i==O, ,n, and for every x in A, and
i== 1, ... , n,

Note that if Z" is normalized then Uo must be a constant function. Finally,
if (h, c, W", U,,) is a representation for some basis Z: of S(Z,,), we say that
it is a quasi-representation for Z".

We can now state:

THEOREM A. If Z" c F( A) is an END normalized weak Markov system
then it has a representation.
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This theorem is essentially [14, Theorem 3], although there are two dif­
ferences: First Zielke does not mention that if (h, c, Wn' V n) is a represen­
tation for Zn then the functions wj(x) are nonconstant. That this must be
so is obvious: If W k is constant it is clear that 7.k = 0; thus the elements of
ZII are not linearly independent, which is a contradiction. Second, in the
statement of Zielke's theorem, no mention is made that {uo, ... , Uk },

k = 0, ..., n, is a basis of S(Zd (it is only asserted that VII is a basis of
S(Zn))' That this stronger statement is true can be inferred by inspection
of the proof of the theorem. Another (unpublished) proof of Theorem A
was obtained by the author combining the Lemma of [8] with a new
embedding property of weak Markov systems [10]. This proof was noted
in [14, Remark (6)]. Theorem A also follows from [II, Theorem I].

Using Theorem A we shall prove

THEOREM I. Assume that A has neither a first nor a last point. Then
Zn c F(A) is a Marken' system if and only (I' it has a representation
(h, c, W II , VII) such that W n satisfies property (M) with respect to h.

If »'k is constant on an interval I, it is readily seen that Uk is proportional
to Uk I on h-1(lnh(A)), and the elements of V" are therefore linearly
dependent on It I (I n It(A)). We thus have

COROLLARy 1. Let A hare property (D). Then Z" c F( A) is a M arkoF
system (I' and only if for erery representation (h, c, W", U,,) of Z", the
elements (~I' W" are strictly increasing in (It, A).

Corollary 1 is essentially due to Zielke (cr. [14, Corollary 3]).
By the endpoints of A we mean sup A and inf A.
As a consequence of Theorem 1 we also have:

THEOREM 2. Let Z" c F(A) he a Markov system on A, and
B:= A \ {inf A, sup A}. Assume, moreover, that if an endpoint of A belongs
to A, then it is a point of accumulation of A at which 7.0, ... , z" are continuous.
Then Z" has a Cehy.fer extension if and only if there is a representation
(h, c, W", V,,) for ZII on B that sati4i'es property (N) with respect to h.

Let the set B be defined as in Theorem 2. We also have:

THEOREM 3. Let Z" c F(A) he a Ceby§ev system on A. Assume,
moreover, that if an endpoint of A is in A, then it is a point 01' accumulation
of A, and all the functions in Z" are continuous at that endpoint. Then S(Zn)
has an adjoined function if and only if there is a quasi-representation
(h, c, W", V,,) for Z" on B that satis.fi'es property (N) with respect to h.

Note that every Haar space defined on a set that has no first nor last
element has a Markov basis (cf., e.g., [9]). In view of this result it is clear
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that Theorem 3 is a straightforward consequence of Theorem 2 and the
following proposition:

THEOREM 4. Let S" he a Haar space. Then the followinl? statements are
equivalent:

(a) S" has an adjoined function.

(b) Every Ceby§ev system Z" c S" has an extension.

The proof of Theorem 4 readily follows from, e.g., [7, Lemma 2J, and
will therefore be omitted.

A set A is said to have property (B) provided that between any two
elements of A is a third element of A. As a consequence of Theorem 3 we
shall prove the following proposition, which contains the main results of
[7, 12] as particular cases.

THEOREM 5. Let A have property (B), and let Z"cF(A) he a Ceby§ev
system on A. Assume, moreover, that if an endpoint of A is in A, then it is
a point of accumulation of A, and all the functions in 2" are continuous at
that endpoint. Then S(Z,,) has an adjoined function in A.

2. PROOFS

Theorem I is a straightforward consequence of Theorem A and the
following auxiliary proposition, of some independent interest:

LEMMA. Let W,,:= {w" ..., w,,} he a sequence of increasing and con­
tinuous functions defined on an open interval (a, b), let c E (a, b), Uo:= I, and
for k = I, , n, let Uk(X):= L' J:l ... J:' 1dwk(td .. ·dw,(td. Assume that
a<~o< <xn<b; then det[u,(.l); i,j=O, ... , n] >0 if and only if Wn
satisfies property (M) with respect to the identity function at {xo, ... , x,,}.

Proof of Lemma. We proceed by induction on n. Since ut(x) =
wt(x) - wt(c), the assertion is trivially true for n = I.

To prove the inductive step we proceed as follows: Let Vo ::= 1 and, for
k=2, ...,Vk_,(X):=S:J;.',,·S;*'dwk(tk d .. ·dw2(td if n>2, or vt(x):=
L<dw2(t) if n=2. Since udx)=L<vk--t(t)dwt(t), subtracting from each
column the preceding one, we readily deduce that det[u;(x j); i, j = 0, ..., n] =
S;~ ... t:- 1 det[v;(t); i, j = 0, ..., n - 1J dv.', (tn _ d,,· dw, (to). Since the func­
tions w;(x) are continuous, and det[v;(tj ); i, j = O...., n - 1J~ 0 for any
choice of points a < to < ... < tn _1 < b, it is clear that det[u;(x);
i,j=O, ... ,n]>O if there are points tj,x,<tj<xj+,;j=O, ...,n-l, such
that det[v;(t j); i,j=O, ... ,n-I]>O and \I',(t) is not constant in a
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neighborhood of tj , for j = 0, ... , n - 1. Also the converse is true. To see
this we argue as follows: Let 1:=[xo,XI]X[X1,xJx '" x [X"_I,X,J,
t:= (to, 11"'" 1,,_Il, andf(t):=det[vj(t,); i,j=O, ...,n-l]. Assume that
for every tEl either f(t) =°or wI(x) is constant in a neighborhood of
some component Ii of t. If A is the set of points t in 1 for which f(t) > 0,
it is clear that

o~rl f"···f'" f{to,···,I"-Ildw,(I,, d···dw,(lo)
l"O ., .XI '" X,of

"=1 f(to, ..., I" l)dw,(I" ,) ... dw,(to)·
'A

Let (to, ..., I" _ Il EA. Then there is an t: > °and some j, °~j ~ n - I, such
that w,(t) is constant on [II-t:, I,+t:]. If J(t, c):= [Io-C, 10+C] x [/I-C,

II +t:] x ... x [I" ,-C, 1,,+ I +t:] and I(t,t:} :=lnJ(/,r.), it is clear that

f f(t)dw,(/" ,)···dw,{to)=O.
111.£1

The sets 1(/, t:) form a covering of A, and therefore have a denumerable
subcovering, say {I(m); m = I, 2,3, ... }. Since

~If f(t)dw,(I,,_,)···dw,(/o)=O,
11m)

we have shown that det[uj(x j ); i, j = 0, ... , n] = 0. The proof of the Lemma
now readily follows by the inductive hypotheses. Q.E.D.

Proof of Theorem 2. To prove the necessity, assume that z,,+ 1 is an
extension to Zn' Then Zn + I := Z" u {z" + I} is a Markov system on B, and
Theorem 1 yields the existence of a representation (h, c, Wn +l' U" +,) for
Z,,+I on B such that W,,+l :={w" ... ,w,,+d satisfies property (M) with
respect to h. Thus a fortiori Wn := {WI' ... , w n } satisfies property (N) with
respect to h.

To prove the sufficiency, let (h, c, W", Un) be a representation for Zn in
B such that W n satisfies property (N) with respect to h, let IV:+ 1(t) :=
arctant, W"*+I:={W,, ,Wn,IV:+ I}, and U:+l(X):=Uo(x)S~(X)S~I...
J~"dW:+l(/n+ddw,,(/,,) dwl(II)' Since W:+I(t) is strictly increasing, it is
readily seen that W: + I satisfies property (M) with respect to h. Applying
the Lemma, we therefore conclude that u:+' is adjoined to S( Un) on B.
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Assume now that b:=sup(A)EA. Since 11':+,(1) is bounded, we have
u:+ I(X) ~ [w: + ,(h(x)) - 11':+ ,(c)] u,,(x) ~ K for every x such that h(x) > e;
thus, u:+ ,(b) := lim, ~ b u: + I (x) exists, and the continuity of the elements
of Stu,,) implies that U:+' := U" u {u" +,} is a weak Cebysev system on
Bu {b}.

We claim that U: +, is a Cebysev system on B u {b}. Suppose the con­
trary; then there is a U E U:+ 1\ {o} with n + 2 zeros xo, ... , x" + , E B v {h },
say X o< ... < x" + " and so X n + , = b. Let q E An (xn , x n + J) be fixed, and
without loss of generality, assume that u(q) > 0. Let {Pk} be an increasing
sequence in B with lim k~x Pk = h. So for sufficiently large k, we have
q<Pk<b and u(q»u(pd. Thus, using the terminology of [13, Chap. 8],
x o, ..., x"' q, Pk form a weak oscillation of u of length n + 3, in contra­
diction to Lemma 8.7a in [13].

Analogously, if a:=inf(A)EA, then u:.I(a):=limx-llu:+,(x) exists,
and U:+ I is a weak Cebysev system on A. A trivial modification of the
argument for B u {h} now yields that U: I , is a Cebysev system on A.

Q.E.D.

Proof of Theorem 5. Let B:=(inf(A),sup(A))nA. From, e.g., [9J, we
know that Z" is a Markov space on B. Let U" := {uo, ..., un} be a Markov
basis of Z" on B. Applying [14, Corollary 3J we conclude that U" has a
representation (h, e, W", Vn ) such that the functions in W" are strictly
increasing in (inf h(B), sup h(B)). It is therefore clear that this representa­
tion satisfies property (N), and therefore Theorem 3 yields the existence of
an adjoined function v for S( V,,), whence the conclusion readily follows.

Q.E.D.

3. EXAMPLE

Let 1:=(0,5), A :=(0, IJu{2,3}u[4,5),

{

I,

wI(t):= 2.25,

1-0.5,

0< 1<2.25

2.25 < I ~ 2.75
2.75 < 1<5

41,

4,

»'2(1) := 41- 5,

6,

41- 10,

O<I~I

1< I ~ 2.25
2.25 < I ~ 2.75
2.75 < I ~ 4
4< 1< 5

Uo := I, u,(x):= g dwl(t), U2(X):= S~ J: dW2(S) dw,(t), and U2
{uo, UI, U2}' Since for every choice of points XO<x I <x2 in A there are
points 1o, II' Xo<lo<x, <I, <X2' such that 11',(1) is increasing at 10 and
II' and w2((0 ) < W2( I d, it is clear that W2 satisfies property (M) with
respect to the identity function. Thus, from Theorem 1 we deduce that U~
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is a Markov system on A. Note, however, that since H"2( I) = w2(2), W2 is
not strictly increasing on A. It is also easy to see that W2 does not satisfy
property (N) (choose, for example, X o= 1, x, =2, x 2 =3, and x J =4). We
shall now show that U2 has another representation on A, for which
property (N) is satisfied.

A straightforward computation shows that

and

{

x-I,

ul(x) = 1.25,
x - 1.5,

0< x ~ 2.25

2.25 < x ~ 2.75

2.75 <x < 5

Let Va := I,

and

{

2(X-I )2,

0,
u2(x)=

2x- 5.5,

2x 2
- 14x + 26.5,

{

x-I,

L',(X):= ~.5x,

.X - 1.5.

2(x-1 )2,

0,
L'2(X:= 0.5(x - 2),

2x - 5.5,

2x 2
- 14x + 26.5,

O<x~1

l<x~2.75

2.75<x~4

4<x< 5.

0<x~2

2<x~3

3<x<5

O<x~1

l<x~2

2<x~3

3<x~4

4<x< 5.

The functions Vj have been obtained by considering the restrictions of the
U j to A, and extending these restrictions to (0, 5) by linear interpolation. It
is therefore clear that V2 := {vo, v" v2 } is a normalized weak Markov
system on (0,5). It is also clear that V2 is END.

Repeating the procedure outlined in the proof of [II, Theorem I] we see
that V2 can be represented on (0,5) as

,he, )
I',(x) = I dpdt),

,)

... h(.\") ,..t

l'2(X) = I I dP2(S) dpdtl,
""I 011
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where

x-I, 0<x~2

r 0<x~2 I, 2<x~3

h(x):= x+ I, 2<x~3 Pl(X) := 0.5(x-l), 3<x~4

x+2, 3<x<5 1.5, 4<x~5

x - 3.5, 5<x<7

and

4(x-l), O<x~1

0, l<x~2

x-2, 2<x~3

P2(X) := I, 3<x~4

x-3, 4<x~5

2, 5<x~6

4x- 22, 6<x< 7.

(This assertion can, of course, be verified directly.) It is readily seen that
P2 := {PI' P2} satisfies property (N) with respect to h. We have therefore
shown that a Markov system may have a representation for which
property (N) is not satisfied, and a different representation for which
property (N) is satisfied.

From Theorem 3 we deduce that S( Un) has an adjoined function on A.
Since A does not satisfy property (B), this example shows that although the
conditions of Theorem 5 are sufficient, they are not necessary.
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